Medical Services Patients & Visitors Health Information For Medical Professionals Quality About Us
Text Size:  -   +  |  Print Page  |  Email Page

Sex-linked recessive

Definition

Sex-linked diseases are passed down through families through one of the X or Y chromosomes. X and Y are sex chromosomes.

Dominant inheritance occurs when an abnormal gene from one parent causes disease even though the matching gene from the other parent is normal. The abnormal gene dominates.

But in recessive inheritance, both matching genes must be abnormal to cause disease. If only one gene in the pair is abnormal, the disease does not occur or it is mild. Someone who has one abnormal gene (but no symptoms) is called a carrier. Carriers can pass abnormal genes to their children.

The term "sex-linked recessive" usually refers to X-linked recessive.

Alternative Names

Inheritance - sex-linked recessive; Genetics - sex-linked recessive; X-linked recessive

Information

X-linked recessive diseases usually occur in males. Males have only one X chromosome. A single recessive gene on that X chromosome will cause the disease.

The Y chromosome is the other half of the XY gene pair in the male. However, the Y chromosome doesn't contain most of the genes of the X chromosome. Because of that, it doesn't protect the male. Diseases such as hemophilia and Duchenne muscular dystrophyoccur from a recessive gene on the X chromosome.

TYPICAL SCENARIOS

In each pregnancy, if the mother is a carrier of a certain disease (she has only one abnormal X chromosome) and the father is not a carrier for the disease, the expected outcome is:

  • 25% chance of a healthy boy
  • 25% chance of a boy with disease
  • 25% chance of a healthy girl
  • 25% chance of a carrier girl without disease

If the father has the disease and the mother is not a carrier, the expected outcomes are:

  • 100% chance of a healthy boy
  • 100% chance of a carrier girl without disease

X-LINKED RECESSIVE DISORDERS IN FEMALES

Females can get an X-linked recessive disorder, but this is very rare. An abnormal gene on the X chromosome from each parent would be required, since a female has two X chromosomes. This could occur in the two scenarios below.

In each pregnancy, if the mother is a carrier and the father has the disease, the expected outcomes are:

  • 25% chance of a healthy boy
  • 25% chance of a boy with the disease
  • 25% chance of a carrier girl
  • 25% chance of a girl with the disease

If both the mother and the father have the disease, the expected outcomes are:

  • 100% chance of the child having the disease, whether boy or girl

The odds of either of these two scenarios are so low that X-linked recessive diseases are sometimes referred to as male only diseases. However, this is not technically correct.

Female carriers can have a normal X chromosome that is abnormally inactivated. This is called "skewed X-inactivation." These females may have symptoms similar to those of males, or they may have only mild symptoms.

References

Fogel BL, Geschwind DH. In: Daroff RB, Fenichel GM, Jankovic J, Mazziotta JC. Bradley's Neurology in Clinical Practice. 6th ed. Philadelphia, PA: Elsevier Saunders; 2012:chap 40.

Sankiewicz P, Lupsik JR. Gene, genomic, and chromosomal disorders. In: Goldman L, Ausiello D, eds. Goldman's Cecil Medicine. 24th ed. Philadelphia, PA: Elsevier Saunders; 2011:chap 40.


Review Date: 5/5/2014
Reviewed By: Chad Haldeman-Englert, MD, FACMG, Wake Forest School of Medicine, Department of Pediatrics, Section on Medical Genetics, Winston-Salem, NC. Review provided by VeriMed Healthcare Network. Also reviewed by David Zieve, MD, MHA, Isla Ogilvie, PhD, and the A.D.A.M. Editorial team.
The information provided herein should not be used during any medical emergency or for the diagnosis or treatment of any medical condition. A licensed medical professional should be consulted for diagnosis and treatment of any and all medical conditions. Call 911 for all medical emergencies. Links to other sites are provided for information only -- they do not constitute endorsements of those other sites. © 1997- A.D.A.M., Inc. Any duplication or distribution of the information contained herein is strictly prohibited.
adam.com